РАСЧЕТ КОМПЛЕКСНОГО ИНДЕКСА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

Цель работы – освоить методику расчета комплексного индекса загрязнения атмосферы.

Задачи работы:

- 1. Изучить методику расчета комплексного индекса загрязнения атмосферы.
- 2. Рассчитать комплексный индекс загрязнения атмосферы и дать прогноз дальнейшего загрязнения.

1 НОРМИРОВАНИЕ КАЧЕСТВА АТМОСФЕРНОГО ВОЗДУХА

Изучив нормативную документацию, ответить на вопросы и выполнить задания.

- 1. Каковы общие требования к организации наблюдений за уровнем загрязнения атмосферы?
 - 2. Каковы цель и виды обследования состояния загрязнения атмосферы?
- 3. Перечислите работы, которые должны быть включены в программу комплексного обследования атмосферы.
 - 4. Опишите метод измерения фоновой концентрации углекислого газа в атмосфере.
- 5. Дайте характеристику хлорметану согласно ГН 2.1.6.1984-05 «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест».
- 6. Дайте определение понятиям первичная и вторичная примесь, качество атмосферы, кислотный дождь, контроль загрязнения атмосферы, стационарный пост наблюдений за загрязнением атмосферы, полная программа контроля загрязнения атмосферы, приземная концентрация примеси в атмосфере, фоновая концентрация загрязняющего атмосферу вещества, ОБУВ согласно ГОСТ 17.2.1.03-84.

Список нормативных документов

- 1. Руководство по контролю загрязнения атмосферы РД 52.04.186-89.
- 2. Гигиенические нормативы ГН 2.1.6.1984-05 «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест».
- 3. ГОСТ 17.2.1.03-84. Охрана природы. Атмосфера. Термины и определения контроля загрязнения.

2 МЕТОДИКА РАСЧЕТА КОМПЛЕКСНОГО ИНДЕКСА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

Комплексный ИЗА (I(n)), учитывающий п загрязняющих веществ, рассчитывается по формуле:

$$I \ n = \prod_{i=1}^{n} = Ii = \prod_{i=1}^{n} \left(\frac{\text{qcp i}}{\prod \prod \text{Kc.c.i}}\right)^{\text{Ci}}$$
 (1)

где qcp i — среднегодовая концентрация i-го загрязняющего вещества, мг/м³; $\Pi \not\square Kc.c.i$ — его среднесуточная предельно допустимая концентрация, мкг/м³;

Ci — безразмерный коэффициент, позволяющий привести степень вредности і-ого загрязняющего вещества к степени вредности диоксида серы.

Значения Ci равны 1,5; 1,3; 1,0 и 0,85 соответственно для 1, 2, 3 и 4 классов опасности загрязняющего вещества. Диоксид серы относится по степени вредности к третьему классу опасности (Ci=1), к ней приводится вредность всех веществ.

Чтобы значения I(n) были сравнимы для разных городов или за разные интервалы времени в одном городе, необходимо рассчитывать их для одинакового количества (m) загрязняющих веществ. Для этого по парциальным значениям Ii для отдельных примесей вначале составляется вариационный ряд, в котором I1 > I2 > ... > In. Далее рассчитывается суммарный I(m) для заданного и одинакового количества (m) загрязняющих веществ.

В информационных документах для оценки уровня загрязнения воздуха используется ИЗА для пяти загрязняющих веществ, рассчитанный по формуле (1), в которой n=m=5.

Показатель ИЗА используется не только, чтобы суммировать данные различных концентраций, измеренных в городе. Он применяется для изучения связи между уровнем загрязнения и заболеваемостью населения. Установлена зависимость между этими показателями и оказалось возможным связать значения ИЗА с числом заболеваний различными болезнями. На основе этих исследований установлены категории низкого, повышенного, высокого и очень высокого загрязнения воздуха.

В соответствии с существующими методами оценки, уровень загрязнения атмосферы может быть:

- низким (H), ИЗА<5;
- повышенным (П), 7<ИЗА≥5;
- высоким (В), 14<ИЗА≥7;
- очень высоким (**ОВ**),ИЗА≥14.

Так, класс «нормы» соответствует уровню загрязнения воздуха ниже среднего по городам страны, класс «риска» равен среднему уровню; класс «кризиса» - выше среднего уровня; класс «бедствия» - значительно выше среднего уровня (табл. 1).

Таблица 1 – Критерий оценки состояния загрязнения атмосферы по комплексному индексу (ИЗА)

Поморожову достояния	Классы экологического состояния атмосферы							
Показатель состояния	норма (Н)	риск (П)	кризис (В)	бедствие (ОВ)				
Уровень загрязнения воздуха	менее 5	5–8	8–15	более 15				

3 ОПРЕДЕЛЕНИЕ КОМПЛЕКСНОГО ИНДЕКСА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

Определить комплексный индекс загрязнения атмосферы (ИЗА). Полученные результаты занести в таблицу 2. Сделать вывод об уровне занрязнения атмосферы.

Таблица 2 - Характеристика загрязнения атмосферы

	Характеристики загрязнения атмосферы									
№ вар	ИЗА ₁ ИЗА ₂		ИЗА3	ИЗА4	ИЗА ₅	ИЗА	уровень загрязнения атмосферы			

Данные среднегодовой концентрации загрязняющего вещества и среднесуточной предельно допустимая концентрация загрязняющего вещества представлены в таблице 3. Классы опасности поллютантов – таблица 4. Таблица 3 – Значения среднегодовой концентрация загрязняющего вещества $(M\Gamma/M^3)$ и

среднесуточная предельно допустимая концентрация поллютантов (мкг/м³)

<i>№</i> вар	Азота оксид		Бенз(а)пирен		Бензол		Сажа		Сероуглерод		Углерода оксид (мг/м ³)		Фторид водоро- да	
	qcp	ПДКсс	qcp	ПДКсс	qcp	ПДКсс	qcp	ПДКсс	qcp	ПДКсс	qcp	ПДКсс	qcp	ПДКсс
1	45	40	0,002	0,001	120	100	60	50	7	5	4	3	6	5
2	54	40	0,01	0,001	158	100	36	50	3	5	3	3	5	5
3	32	40	0,002	0,001	100	100	59	50	4	5	4	3	14	5
4	56	40	0,003	0,001	170	100	69	50	11	5	5	3	5	5
5	23	40	0,01	0,001	198	100	36	50	2	5	3	3	14	5
6	12	40	0,01	0,001	134	100	89	50	8	5	2	3	13	5
7	45	40	0,002	0,001	134	100	52	50	4	5	4	3	2	5
8	65	40	0,01	0,001	123	100	78	50	5	5	5	3	5	5
9	46	40	0,003	0,001	165	100	73	50	4	5	5	3	6	5
10	75	40	0,02	0,001	142	100	92	50	6	5	5	3	7	5
11	34	40	0,002	0,001	109	100	82	50	2	5	2	3	7	5
12	32	40	0,02	0,001	167	100	55	50	4	5	3	3	3	5
13	43	40	0,004	0,001	123	100	95	50	3	5	4	3	6	5
14	56	40	0,003	0,001	167	100	55	50	5	5	2	3	7	5
15	57	40	0,001	0,001	189	100	94	50	4	5	5	3	8	5
16	54	40	0,002	0,001	120	100	73	50	2	5	2	3	9	5
17	34	40	0,003	0,001	167	100	84	50	6	5	8	3	14	5
18	65	40	0,005	0,001	198	100	93	50	2	5	9	3	15	5
19	32	40	0,004	0,001	159	100	74	50	11	5	7	3	13	5
20	34	40	0,002	0,001	198	100	56	50	2	5	8	3	16	5
21	21	40	0,001	0,001	188	100	93	50	4	5	4	3	17	5
22	34	40	0,002	0,001	176	100	65	50	7	5	5	3	14	5
23	56	40	0,003	0,001	178	100	74	50	6	5	6	3	13	5
24	43	40	0,001	0,001	139	100	92	50	7	5	5	3	12	5
25	33	40	0,003	0,001	145	100	73	50	4	5	6	3	6	5

Таблица 4 – Некоторые характеристики поллютантов

№	Вещество	Особенности воздействия на организм	Класс опасно- сти	ПДК _{МР} , мг/м ³	ПДК _{СС} , мг/м ³
1	Оксид углерода	Π^*	4	5	3
2	Оксид азота	О	3	0,4	0,06
3	Бенз(а)пирен	К	1	-	0,001
4	Сажа	Ф, К	4	0,15	0,05
5	Фторид водорода	-	3	0,02	0,005
6	Сероуглерод	-	2	0,03	0,005
7	Бензол	K+	2	0,3	0,1

^{*} П - пары и/или газы ,+- требуется специальная защита кожи и глаз, О - вещества с остронаправленным механизмом действия, требующие автоматического контроля за их содержанием в воздухе, К - канцерогены, Φ - аэрозоли преимущественно фиброгенного действия